Computer Science > Computer Vision and Pattern Recognition
[Submitted on 8 Sep 2022 (v1), last revised 14 Nov 2022 (this version, v2)]
Title:Levenshtein OCR
View PDFAbstract:A novel scene text recognizer based on Vision-Language Transformer (VLT) is presented. Inspired by Levenshtein Transformer in the area of NLP, the proposed method (named Levenshtein OCR, and LevOCR for short) explores an alternative way for automatically transcribing textual content from cropped natural images. Specifically, we cast the problem of scene text recognition as an iterative sequence refinement process. The initial prediction sequence produced by a pure vision model is encoded and fed into a cross-modal transformer to interact and fuse with the visual features, to progressively approximate the ground truth. The refinement process is accomplished via two basic character-level operations: deletion and insertion, which are learned with imitation learning and allow for parallel decoding, dynamic length change and good interpretability. The quantitative experiments clearly demonstrate that LevOCR achieves state-of-the-art performances on standard benchmarks and the qualitative analyses verify the effectiveness and advantage of the proposed LevOCR algorithm. Code is available at this https URL.
Submission history
From: Cheng Da [view email][v1] Thu, 8 Sep 2022 06:46:50 UTC (979 KB)
[v2] Mon, 14 Nov 2022 06:09:39 UTC (979 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.