Computer Science > Software Engineering
[Submitted on 22 Aug 2022 (v1), last revised 17 Jul 2023 (this version, v3)]
Title:Antecedent Predictions Are More Important Than You Think: An Effective Method for Tree-Based Code Generation
View PDFAbstract:Code generation focuses on the automatic conversion of natural language (NL) utterances into code snippets. The sequence-to-tree (Seq2Tree) approaches are proposed for code generation, with the guarantee of the grammatical correctness of the generated code, which generate the subsequent Abstract Syntax Tree (AST) node relying on antecedent predictions of AST nodes. Existing Seq2Tree methods tend to treat both antecedent predictions and subsequent predictions equally. However, under the AST constraints, it is difficult for Seq2Tree models to produce the correct subsequent prediction based on incorrect antecedent predictions. Thus, antecedent predictions ought to receive more attention than subsequent predictions. To this end, in this paper, we propose an effective method, named Antecedent Prioritized (AP) Loss, that helps the model attach importance to antecedent predictions by exploiting the position information of the generated AST nodes. We design an AST-to-Vector (AST2Vec) method, that maps AST node positions to two-dimensional vectors, to model the position information of AST nodes. To evaluate the effectiveness of our proposed loss, we implement and train an Antecedent Prioritized Tree-based code generation model called APT. With better antecedent predictions and accompanying subsequent predictions, APT significantly improves the performance. We conduct extensive experiments on four benchmark datasets, and the experimental results demonstrate the superiority and generality of our proposed method.
Submission history
From: Yihong Dong [view email][v1] Mon, 22 Aug 2022 01:23:03 UTC (1,123 KB)
[v2] Mon, 14 Nov 2022 06:46:31 UTC (1,647 KB)
[v3] Mon, 17 Jul 2023 22:36:57 UTC (1,983 KB)
Current browse context:
cs.SE
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.