Skip to main content
Cornell University
We gratefully acknowledge support from the Simons Foundation, member institutions, and all contributors. Donate
arxiv logo > astro-ph > arXiv:2208.09098

Help | Advanced Search

arXiv logo
Cornell University Logo

quick links

  • Login
  • Help Pages
  • About

Astrophysics > Instrumentation and Methods for Astrophysics

arXiv:2208.09098 (astro-ph)
[Submitted on 19 Aug 2022]

Title:Discovering Faint and High Apparent Motion Rate Near-Earth Asteroids Using A Deep Learning Program

Authors:Franklin Wang, Jian Ge, Kevin Willis
View a PDF of the paper titled Discovering Faint and High Apparent Motion Rate Near-Earth Asteroids Using A Deep Learning Program, by Franklin Wang and 2 other authors
View PDF
Abstract:Although many near-Earth objects have been found by ground-based telescopes, some fast-moving ones, especially those near detection limits, have been missed by observatories. We developed a convolutional neural network for detecting faint fast-moving near-Earth objects. It was trained with artificial streaks generated from simulations and was able to find these asteroid streaks with an accuracy of 98.7% and a false positive rate of 0.02% on simulated data. This program was used to search image data from the Zwicky Transient Facility (ZTF) in four nights in 2019, and it identified six previously undiscovered asteroids. The visual magnitudes of our detections range from ~19.0 - 20.3 and motion rates range from ~6.8 - 24 deg/day, which is very faint compared to other ZTF detections moving at similar motion rates. Our asteroids are also ~1 - 51 m diameter in size and ~5 - 60 lunar distances away at close approach, assuming their albedo values follow the albedo distribution function of known asteroids. The use of a purely simulated dataset to train our model enables the program to gain sensitivity in detecting faint and fast-moving objects while still being able to recover nearly all discoveries made by previously designed neural networks which used real detections to train neural networks. Our approach can be adopted by any observatory for detecting fast-moving asteroid streaks.
Comments: 14 pages, 22 Figures, 4 Tables; To be published in the Monthly Notices of the Royal Astronomical Society (MNRAS)
Subjects: Instrumentation and Methods for Astrophysics (astro-ph.IM); Earth and Planetary Astrophysics (astro-ph.EP); Machine Learning (cs.LG)
Cite as: arXiv:2208.09098 [astro-ph.IM]
  (or arXiv:2208.09098v1 [astro-ph.IM] for this version)
  https://doi.org/10.48550/arXiv.2208.09098
arXiv-issued DOI via DataCite
Related DOI: https://doi.org/10.1093/mnras/stac2347
DOI(s) linking to related resources

Submission history

From: Franklin Wang [view email]
[v1] Fri, 19 Aug 2022 00:16:09 UTC (8,625 KB)
Full-text links:

Access Paper:

    View a PDF of the paper titled Discovering Faint and High Apparent Motion Rate Near-Earth Asteroids Using A Deep Learning Program, by Franklin Wang and 2 other authors
  • View PDF
  • TeX Source
  • Other Formats
view license
Current browse context:
astro-ph.IM
< prev   |   next >
new | recent | 2022-08
Change to browse by:
astro-ph
astro-ph.EP
cs
cs.LG

References & Citations

  • NASA ADS
  • Google Scholar
  • Semantic Scholar
a export BibTeX citation Loading...

BibTeX formatted citation

×
Data provided by:

Bookmark

BibSonomy logo Reddit logo

Bibliographic and Citation Tools

Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)

Code, Data and Media Associated with this Article

alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)

Demos

Replicate (What is Replicate?)
Hugging Face Spaces (What is Spaces?)
TXYZ.AI (What is TXYZ.AI?)

Recommenders and Search Tools

Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender (What is IArxiv?)
  • Author
  • Venue
  • Institution
  • Topic

arXivLabs: experimental projects with community collaborators

arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.

Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.

Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.

Which authors of this paper are endorsers? | Disable MathJax (What is MathJax?)
  • About
  • Help
  • contact arXivClick here to contact arXiv Contact
  • subscribe to arXiv mailingsClick here to subscribe Subscribe
  • Copyright
  • Privacy Policy
  • Web Accessibility Assistance
  • arXiv Operational Status
    Get status notifications via email or slack