Computer Science > Computer Vision and Pattern Recognition
[Submitted on 18 Aug 2022 (v1), last revised 11 May 2023 (this version, v2)]
Title:Discovering Bugs in Vision Models using Off-the-shelf Image Generation and Captioning
View PDFAbstract:Automatically discovering failures in vision models under real-world settings remains an open challenge. This work demonstrates how off-the-shelf, large-scale, image-to-text and text-to-image models, trained on vast amounts of data, can be leveraged to automatically find such failures. In essence, a conditional text-to-image generative model is used to generate large amounts of synthetic, yet realistic, inputs given a ground-truth label. Misclassified inputs are clustered and a captioning model is used to describe each cluster. Each cluster's description is used in turn to generate more inputs and assess whether specific clusters induce more failures than expected. We use this pipeline to demonstrate that we can effectively interrogate classifiers trained on ImageNet to find specific failure cases and discover spurious correlations. We also show that we can scale the approach to generate adversarial datasets targeting specific classifier architectures. This work serves as a proof-of-concept demonstrating the utility of large-scale generative models to automatically discover bugs in vision models in an open-ended manner. We also describe a number of limitations and pitfalls related to this approach.
Submission history
From: Olivia Wiles [view email][v1] Thu, 18 Aug 2022 13:49:10 UTC (3,604 KB)
[v2] Thu, 11 May 2023 17:13:16 UTC (18,376 KB)
Current browse context:
cs.CV
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.