Computer Science > Graphics
[Submitted on 23 Jul 2022 (v1), last revised 29 Jun 2023 (this version, v3)]
Title:Interactive Volume Visualization via Multi-Resolution Hash Encoding based Neural Representation
View PDFAbstract:Neural networks have shown great potential in compressing volume data for visualization. However, due to the high cost of training and inference, such volumetric neural representations have thus far only been applied to offline data processing and non-interactive rendering. In this paper, we demonstrate that by simultaneously leveraging modern GPU tensor cores, a native CUDA neural network framework, and a well-designed rendering algorithm with macro-cell acceleration, we can interactively ray trace volumetric neural representations (10-60fps). Our neural representations are also high-fidelity (PSNR > 30dB) and compact (10-1000x smaller). Additionally, we show that it is possible to fit the entire training step inside a rendering loop and skip the pre-training process completely. To support extreme-scale volume data, we also develop an efficient out-of-core training strategy, which allows our volumetric neural representation training to potentially scale up to terascale using only an NVIDIA RTX 3090 workstation.
Submission history
From: Qi Wu [view email][v1] Sat, 23 Jul 2022 23:04:19 UTC (46,697 KB)
[v2] Mon, 24 Oct 2022 00:26:39 UTC (35,823 KB)
[v3] Thu, 29 Jun 2023 20:35:50 UTC (33,686 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.