Mathematics > Dynamical Systems
[Submitted on 15 Jul 2022 (v1), last revised 15 Jan 2023 (this version, v3)]
Title:A category-theoretic proof of the ergodic decomposition theorem
View PDFAbstract:The ergodic decomposition theorem is a cornerstone result of dynamical systems and ergodic theory. It states that every invariant measure on a dynamical system is a mixture of ergodic ones. Here we formulate and prove the theorem in terms of string diagrams, using the formalism of Markov categories. We recover the usual measure-theoretic statement by instantiating our result in the category of stochastic kernels. Along the way we give a conceptual treatment of several concepts in the theory of deterministic and stochastic dynamical systems. In particular,
- ergodic measures appear very naturally as particular cones of deterministic morphisms (in the sense of Markov categories);
- the invariant $\sigma$-algebra of a dynamical system can be seen as a colimit in the category of Markov kernels.
In line with other uses of category theory, once the necessary structures are in place, our proof of the main theorem is much simpler than traditional approaches. In particular, it does not use any quantitative limiting arguments, and it does not rely on the cardinality of the group or monoid indexing the dynamics. We hope that this result paves the way for further applications of category theory to dynamical systems, ergodic theory, and information theory.
Submission history
From: Paolo Perrone [view email][v1] Fri, 15 Jul 2022 09:06:43 UTC (43 KB)
[v2] Thu, 21 Jul 2022 17:02:22 UTC (43 KB)
[v3] Sun, 15 Jan 2023 17:15:10 UTC (45 KB)
Current browse context:
math.DS
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.