Computer Science > Robotics
[Submitted on 11 Jul 2022 (v1), last revised 8 Jul 2023 (this version, v2)]
Title:Reinforcement Learning of CPG-regulated Locomotion Controller for a Soft Snake Robot
View PDFAbstract:Intelligent control of soft robots is challenging due to the nonlinear and difficult-to-model dynamics. One promising model-free approach for soft robot control is reinforcement learning (RL). However, model-free RL methods tend to be computationally expensive and data-inefficient and may not yield natural and smooth locomotion patterns for soft robots. In this work, we develop a bio-inspired design of a learning-based goal-tracking controller for a soft snake robot. The controller is composed of two modules: An RL module for learning goal-tracking behaviors given the unmodeled and stochastic dynamics of the robot, and a central pattern generator (CPG) with the Matsuoka oscillators for generating stable and diverse locomotion patterns. We theoretically investigate the maneuverability of Matsuoka CPG's oscillation bias, frequency, and amplitude for steering control, velocity control, and sim-to-real adaptation of the soft snake robot. Based on this analysis, we proposed a composition of RL and CPG modules such that the RL module regulates the tonic inputs to the CPG system given state feedback from the robot, and the output of the CPG module is then transformed into pressure inputs to pneumatic actuators of the soft snake robot. This design allows the RL agent to naturally learn to entrain the desired locomotion patterns determined by the CPG maneuverability. We validated the optimality and robustness of the control design in both simulation and real experiments, and performed extensive comparisons with state-of-art RL methods to demonstrate the benefit of our bio-inspired control design.
Submission history
From: Xuan Liu [view email][v1] Mon, 11 Jul 2022 14:21:13 UTC (14,299 KB)
[v2] Sat, 8 Jul 2023 10:08:59 UTC (19,962 KB)
Current browse context:
cs.RO
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.