Computer Science > Data Structures and Algorithms
[Submitted on 6 Jul 2022]
Title:Learning Hierarchical Structure of Clusterable Graphs
View PDFAbstract:We consider the problem of learning the hierarchical cluster structure of graphs in the seeded model, where besides the input graph the algorithm is provided with a small number of `seeds', i.e. correctly clustered data points. In particular, we ask whether one can approximate the Dasgupta cost of a graph, a popular measure of hierarchical clusterability, in sublinear time and using a small number of seeds. Our main result is an $O(\sqrt{\log k})$ approximation to Dasgupta cost of $G$ in $\approx \text{poly}(k)\cdot n^{1/2+O(\epsilon)}$ time using $\approx \text{poly}(k)\cdot n^{O(\epsilon)}$ seeds, effectively giving a sublinear time simulation of the algorithm of Charikar and Chatziafratis[SODA'17] on clusterable graphs. To the best of our knowledge, ours is the first result on approximating the hierarchical clustering properties of such graphs in sublinear time.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.