Computer Science > Robotics
[Submitted on 3 Jul 2022]
Title:Pregrasp Object Material Classification by a Novel Gripper Design with Integrated Spectroscopy
View PDFAbstract:Robots benefit from being able to classify objects they interact with or manipulate based on their material properties. This capability ensures fine manipulation of complex objects through proper grasp pose and force selection. Prior work has focused on haptic or visual processing to determine material type at grasp time. In this work, we introduce a novel parallel robot gripper design and a method for collecting spectral readings and visual images from within the gripper finger. We train a nonlinear Support Vector Machine (SVM) that can classify the material of the object about to be grasped through recursive estimation, with increasing confidence as the distance from the finger tips to the object decreases. In order to validate the hardware design and classification method, we collect samples from 16 real and fake fruit varieties (composed of polystyrene/plastic) resulting in a dataset containing spectral curves, scene images, and high-resolution texture images as the objects are grasped, lifted, and released. Our modeling method demonstrates an accuracy of 96.4% in classifying objects in a 32 class decision problem. This represents a performance improvement by 29.4% over the state of the art computer vision algorithms at distinguishing between visually similar materials. In contrast to prior work, our recursive estimation model accounts for increasing spectral signal strength and allows for decisions to be made as the gripper approaches an object. We conclude that spectroscopy is a promising sensing modality for enabling robots to not only classify grasped objects but also understand their underlying material composition.
Submission history
From: Nathaniel Hanson [view email][v1] Sun, 3 Jul 2022 03:14:45 UTC (27,228 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.