Computer Science > Databases
[Submitted on 28 Jun 2022 (v1), last revised 9 Jan 2023 (this version, v4)]
Title:Mining Seasonal Temporal Patterns in Time Series
View PDFAbstract:Very large time series are increasingly available from an ever wider range of IoT-enabled sensors, from which significant insights can be obtained through mining temporal patterns from them. A useful type of patterns found in many real-world applications exhibits periodic occurrences, and is thus called seasonal temporal pattern (STP). Compared to regular patterns, mining seasonal temporal patterns is more challenging since traditional measures such as support and confidence do not capture the seasonality characteristics. Further, the anti-monotonicity property does not hold for STPs, and thus, resulting in an exponential search space. This paper presents our Frequent Seasonal Temporal Pattern Mining from Time Series (FreqSTPfTS) solution providing: (1) The first solution for seasonal temporal pattern mining (STPM) from time series that can mine STP at different data granularities. (2) The STPM algorithm that uses efficient data structures and two pruning techniques to reduce the search space and speed up the mining process. (3) An approximate version of STPM that uses mutual information, a measure of data correlation, to prune unpromising time series from the search space. (4) An extensive experimental evaluation showing that STPM outperforms the baseline in runtime and memory consumption, and can scale to big datasets. The approximate STPM is up to an order of magnitude faster and less memory consuming than the baseline, while maintaining high accuracy.
Submission history
From: Van Long Ho [view email][v1] Tue, 28 Jun 2022 10:02:55 UTC (1,510 KB)
[v2] Fri, 1 Jul 2022 13:46:11 UTC (1,515 KB)
[v3] Mon, 10 Oct 2022 13:37:48 UTC (987 KB)
[v4] Mon, 9 Jan 2023 12:34:30 UTC (978 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.