Computer Science > Computational Engineering, Finance, and Science
[Submitted on 21 Jun 2022]
Title:Efficient Numerical Schemes for Multidimensional Population Balance Models
View PDFAbstract:Multidimensional population balance models (PBMs) describe chemical and biological processes having a distribution over two or more intrinsic properties (such as size and age, or two independent spatial variables). The incorporation of additional intrinsic variables into a PBM improves its descriptive capability and can be necessary to capture specific features of interest. As most PBMs of interest cannot be solved analytically, computationally expensive high-order finite difference or finite volume methods are frequently used to obtain an accurate numerical solution. We propose a finite difference scheme based on operator splitting and solving each sub-problem at the limit of numerical stability that achieves a discretization error that is zero for certain classes of PBMs and low enough to be acceptable for other classes. In conjunction to employing specially constructed meshes and variable transformations, the scheme exploits the commutative property of the differential operators present in many classes of PBMs. The scheme has very low computational cost -- potentially as low as just memory reallocation. Multiple case studies demonstrate the performance of the proposed scheme.
Current browse context:
cs.CE
Change to browse by:
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.