Computer Science > Machine Learning
[Submitted on 22 Jun 2022 (v1), last revised 15 Jan 2024 (this version, v2)]
Title:KeyCLD: Learning Constrained Lagrangian Dynamics in Keypoint Coordinates from Images
View PDFAbstract:We present KeyCLD, a framework to learn Lagrangian dynamics from images. Learned keypoints represent semantic landmarks in images and can directly represent state dynamics. We show that interpreting this state as Cartesian coordinates, coupled with explicit holonomic constraints, allows expressing the dynamics with a constrained Lagrangian. KeyCLD is trained unsupervised end-to-end on sequences of images. Our method explicitly models the mass matrix, potential energy and the input matrix, thus allowing energy based control. We demonstrate learning of Lagrangian dynamics from images on the dm_control pendulum, cartpole and acrobot environments. KeyCLD can be learned on these systems, whether they are unactuated, underactuated or fully actuated. Trained models are able to produce long-term video predictions, showing that the dynamics are accurately learned. We compare with Lag-VAE, Lag-caVAE and HGN, and investigate the benefit of the Lagrangian prior and the constraint function. KeyCLD achieves the highest valid prediction time on all benchmarks. Additionally, a very straightforward energy shaping controller is successfully applied on the fully actuated systems. Please refer to our project page for code and additional results: this https URL
Submission history
From: Rembert Daems [view email][v1] Wed, 22 Jun 2022 12:51:36 UTC (1,514 KB)
[v2] Mon, 15 Jan 2024 12:13:57 UTC (3,688 KB)
Current browse context:
cs.LG
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.