Computer Science > Networking and Internet Architecture
[Submitted on 21 Jun 2022]
Title:NorBERT: NetwOrk Representations through BERT for Network Analysis and Management
View PDFAbstract:Deep neural network models have been very successfully applied to Natural Language Processing (NLP) and Image based tasks. Their application to network analysis and management tasks is just recently being pursued. Our interest is in producing deep models that can be effectively generalized to perform well on multiple network tasks in different environments. A major challenge is that traditional deep models often rely on categorical features, but cannot handle unseen categorical values. One method for dealing with such problems is to learn contextual embeddings for categorical variables used by deep networks to improve their performance. In this paper, we adapt the NLP pre-training technique and associated deep model BERT to learn semantically meaningful numerical representations (embeddings) for Fully Qualified Domain Names (FQDNs) used in communication networks. We show through a series of experiments that such an approach can be used to generate models that maintain their effectiveness when applied to environments other than the one in which they were trained.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.