Computer Science > Computer Vision and Pattern Recognition
[Submitted on 2 Jun 2022 (v1), last revised 11 Oct 2022 (this version, v5)]
Title:EfficientFormer: Vision Transformers at MobileNet Speed
View PDFAbstract:Vision Transformers (ViT) have shown rapid progress in computer vision tasks, achieving promising results on various benchmarks. However, due to the massive number of parameters and model design, \textit{e.g.}, attention mechanism, ViT-based models are generally times slower than lightweight convolutional networks. Therefore, the deployment of ViT for real-time applications is particularly challenging, especially on resource-constrained hardware such as mobile devices. Recent efforts try to reduce the computation complexity of ViT through network architecture search or hybrid design with MobileNet block, yet the inference speed is still unsatisfactory. This leads to an important question: can transformers run as fast as MobileNet while obtaining high performance? To answer this, we first revisit the network architecture and operators used in ViT-based models and identify inefficient designs. Then we introduce a dimension-consistent pure transformer (without MobileNet blocks) as a design paradigm. Finally, we perform latency-driven slimming to get a series of final models dubbed EfficientFormer. Extensive experiments show the superiority of EfficientFormer in performance and speed on mobile devices. Our fastest model, EfficientFormer-L1, achieves $79.2\%$ top-1 accuracy on ImageNet-1K with only $1.6$ ms inference latency on iPhone 12 (compiled with CoreML), which runs as fast as MobileNetV2$\times 1.4$ ($1.6$ ms, $74.7\%$ top-1), and our largest model, EfficientFormer-L7, obtains $83.3\%$ accuracy with only $7.0$ ms latency. Our work proves that properly designed transformers can reach extremely low latency on mobile devices while maintaining high performance.
Submission history
From: Yanyu Li [view email][v1] Thu, 2 Jun 2022 17:51:03 UTC (241 KB)
[v2] Tue, 14 Jun 2022 17:50:47 UTC (284 KB)
[v3] Tue, 5 Jul 2022 14:50:23 UTC (286 KB)
[v4] Thu, 21 Jul 2022 22:22:37 UTC (286 KB)
[v5] Tue, 11 Oct 2022 03:06:16 UTC (293 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.