Computer Science > Cryptography and Security
[Submitted on 30 May 2022 (v1), last revised 23 Jun 2022 (this version, v2)]
Title:Integrity Authentication in Tree Models
View PDFAbstract:Tree models are very widely used in practice of machine learning and data mining. In this paper, we study the problem of model integrity authentication in tree models. In general, the task of model integrity authentication is the design \& implementation of mechanisms for checking/detecting whether the model deployed for the end-users has been tampered with or compromised, e.g., malicious modifications on the model. We propose an authentication framework that enables the model builders/distributors to embed a signature to the tree model and authenticate the existence of the signature by only making a small number of black-box queries to the model. To the best of our knowledge, this is the first study of signature embedding on tree models. Our proposed method simply locates a collection of leaves and modifies their prediction values, which does not require any training/testing data nor any re-training. The experiments on a large number of public classification datasets confirm that the proposed signature embedding process has a high success rate while only introducing a minimal prediction accuracy loss.
Submission history
From: Ping Li [view email][v1] Mon, 30 May 2022 21:56:23 UTC (124 KB)
[v2] Thu, 23 Jun 2022 12:52:53 UTC (135 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.