Skip to main content
Cornell University
We gratefully acknowledge support from the Simons Foundation, member institutions, and all contributors. Donate
arxiv logo > math > arXiv:2205.15096

Help | Advanced Search

arXiv logo
Cornell University Logo

quick links

  • Login
  • Help Pages
  • About

Mathematics > Combinatorics

arXiv:2205.15096 (math)
[Submitted on 30 May 2022 (v1), last revised 10 Apr 2024 (this version, v2)]

Title:Linear versus centred chromatic numbers

Authors:Prosenjit Bose, Vida Dujmović, Hussein Houdrouge, Mehrnoosh Javarsineh, Pat Morin
View a PDF of the paper titled Linear versus centred chromatic numbers, by Prosenjit Bose and 4 other authors
View PDF
Abstract:$\DeclareMathOperator{\chicen}{\chi_{\mathrm{cen}}}\DeclareMathOperator{\chilin}{\chi_{\mathrm{lin}}}$ A centred colouring of a graph is a vertex colouring in which every connected subgraph contains a vertex whose colour is unique and a \emph{linear colouring} is a vertex colouring in which every (not-necessarily induced) path contains a vertex whose colour is unique. For a graph $G$, the centred chromatic number $\chicen(G)$ and the linear chromatic number $\chilin(G)$ denote the minimum number of distinct colours required for a centred, respectively, linear colouring of $G$. From these definitions, it follows immediately that $\chilin(G)\le \chicen(G)$ for every graph $G$. The centred chromatic number is equivalent to treedepth and has been studied extensively. Much less is known about linear colouring. Kun et al [Algorithmica 83(1)] prove that $\chicen(G) \le \tilde{O}(\chilin(G)^{190})$ for any graph $G$ and conjecture that $\chicen(G)\le 2\chilin(G)$. Their upper bound was subsequently improved by Czerwinski et al [SIDMA 35(2)] to $\chicen(G)\le\tilde{O}(\chilin(G)^{19})$. The proof of both upper bounds relies on establishing a lower bound on the linear chromatic number of pseudogrids, which appear in the proof due to their critical relationship to treewidth. Specifically, Kun et al prove that $k\times k$ pseudogrids have linear chromatic number $\Omega(\sqrt{k})$. Our main contribution is establishing a tight bound on the linear chromatic number of pseudogrids, specifically $\chilin(G)\ge \Omega(k)$ for every $k\times k$ pseudogrid $G$. As a consequence we improve the general bound for all graphs to $\chicen(G)\le \tilde{O}(\chilin(G)^{10})$. In addition, this tight bound gives further evidence in support of Kun et al's conjecture (above) that the centred chromatic number of any graph is upper bounded by a linear function of its linear chromatic number.
Comments: Minor corrections and updates
Subjects: Combinatorics (math.CO); Discrete Mathematics (cs.DM)
Cite as: arXiv:2205.15096 [math.CO]
  (or arXiv:2205.15096v2 [math.CO] for this version)
  https://doi.org/10.48550/arXiv.2205.15096
arXiv-issued DOI via DataCite

Submission history

From: Pat Morin [view email]
[v1] Mon, 30 May 2022 13:39:19 UTC (93 KB)
[v2] Wed, 10 Apr 2024 13:30:54 UTC (134 KB)
Full-text links:

Access Paper:

    View a PDF of the paper titled Linear versus centred chromatic numbers, by Prosenjit Bose and 4 other authors
  • View PDF
  • TeX Source
  • Other Formats
view license
Current browse context:
math.CO
< prev   |   next >
new | recent | 2022-05
Change to browse by:
cs
cs.DM
math

References & Citations

  • NASA ADS
  • Google Scholar
  • Semantic Scholar
a export BibTeX citation Loading...

BibTeX formatted citation

×
Data provided by:

Bookmark

BibSonomy logo Reddit logo

Bibliographic and Citation Tools

Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)

Code, Data and Media Associated with this Article

alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)

Demos

Replicate (What is Replicate?)
Hugging Face Spaces (What is Spaces?)
TXYZ.AI (What is TXYZ.AI?)

Recommenders and Search Tools

Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
  • Author
  • Venue
  • Institution
  • Topic

arXivLabs: experimental projects with community collaborators

arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.

Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.

Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.

Which authors of this paper are endorsers? | Disable MathJax (What is MathJax?)
  • About
  • Help
  • contact arXivClick here to contact arXiv Contact
  • subscribe to arXiv mailingsClick here to subscribe Subscribe
  • Copyright
  • Privacy Policy
  • Web Accessibility Assistance
  • arXiv Operational Status
    Get status notifications via email or slack