Mathematics > Numerical Analysis
[Submitted on 26 May 2022]
Title:Automatic parameter selection for the TGV regularizer in image restoration under Poisson noise
View PDFAbstract:We address the image restoration problem under Poisson noise corruption. The Kullback-Leibler divergence, which is typically adopted in the variational framework as data fidelity term in this case, is coupled with the second-order Total Generalized Variation (TGV$^2$). The TGV$^2$ regularizer is known to be capable of preserving both smooth and piece-wise constant features in the image, however its behavior is subject to a suitable setting of the parameters arising in its expression. We propose a hierarchical Bayesian formulation of the original problem coupled with a Maximum A Posteriori estimation approach, according to which the unknown image and parameters can be jointly and automatically estimated by minimizing a given cost functional. The minimization problem is tackled via a scheme based on the Alternating Direction Method of Multipliers, which also incorporates a procedure for the automatic selection of the regularization parameter by means of a popular discrepancy principle. Computational results show the effectiveness of our proposal.
Submission history
From: Monica Pragliola [view email][v1] Thu, 26 May 2022 15:42:27 UTC (5,651 KB)
Current browse context:
math.NA
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.