Astrophysics > High Energy Astrophysical Phenomena
[Submitted on 25 May 2022]
Title:VLBI observations of GRB 201015A, a relatively faint GRB with a hint of Very High Energy gamma-ray emission
View PDFAbstract:GRB 201015A is a long-duration Gamma-Ray Burst (GRB) which was detected at very high energies (> 100 GeV) using the MAGIC telescopes. If confirmed, this would be the fifth and least luminous GRB ever detected at this energies. We performed a radio follow-up of GRB 201015A over twelve different epochs, from 1.4 to 117 days post-burst, with the Karl G. Jansky Very Large Array, e-MERLIN and the European VLBI Network. We included optical and X-rays observations, performed with the Multiple Mirror Telescope and the Chandra X-ray Observatory respectively, together with publicly available data. We detected a point-like transient, consistent with the position of GRB 201015A until 23 and 47 days post-burst at 1.5 and 5 GHz, respectively. The source was detected also in both optical (1.4 and 2.2 days post-burst) and X-ray (8.4 and 13.6 days post-burst) observations. The multi-wavelength afterglow light curves can be explained with the standard model for a GRB seen on-axis, which expands and decelerates into a medium with a homogeneous density, while a circumburst medium with a wind-like profile is disfavoured. Notwithstanding the high resolution provided by the VLBI, we could not pinpoint any expansion or centroid displacement of the outflow. If the GRB is seen at the viewing angle which maximises the apparent velocity, we estimate that the Lorentz factor for the possible proper motion is $\Gamma_{\alpha}$ < 40 in right ascension and $\Gamma_{\delta}$ < 61 in declination. On the other hand, if the GRB is seen on-axis, the size of the afterglow is <5 pc and <16 pc at 25 and 47 days. Finally, the early peak in the optical light curve suggests the presence of a reverse shock component before 0.01 days from the burst.
Submission history
From: Stefano Giarratana [view email][v1] Wed, 25 May 2022 12:59:50 UTC (128 KB)
Current browse context:
astro-ph.HE
Change to browse by:
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.