Computer Science > Computer Vision and Pattern Recognition
[Submitted on 11 May 2022]
Title:TDT: Teaching Detectors to Track without Fully Annotated Videos
View PDFAbstract:Recently, one-stage trackers that use a joint model to predict both detections and appearance embeddings in one forward pass received much attention and achieved state-of-the-art results on the Multi-Object Tracking (MOT) benchmarks. However, their success depends on the availability of videos that are fully annotated with tracking data, which is expensive and hard to obtain. This can limit the model generalization. In comparison, the two-stage approach, which performs detection and embedding separately, is slower but easier to train as their data are easier to annotate. We propose to combine the best of the two worlds through a data distillation approach. Specifically, we use a teacher embedder, trained on Re-ID datasets, to generate pseudo appearance embedding labels for the detection datasets. Then, we use the augmented dataset to train a detector that is also capable of regressing these pseudo-embeddings in a fully-convolutional fashion. Our proposed one-stage solution matches the two-stage counterpart in quality but is 3 times faster. Even though the teacher embedder has not seen any tracking data during training, our proposed tracker achieves competitive performance with some popular trackers (e.g. JDE) trained with fully labeled tracking data.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.