Mathematics > Numerical Analysis
[Submitted on 29 Apr 2022]
Title:Numerical Solution of the Savage-Hutter Equations for Granular Avalanche Flow using the Discontinuous Galerkin Method
View PDFAbstract:The Savage-Hutter (SH) equations are a hyperbolic system of nonlinear partial differential equations describing the temporal evolution of the depth and depth averaged velocity for modelling the avalanche of a shallow layer of granular materials on an inclined surface. These equations admit the occurrence of shock waves and vacuum fronts as in the shallow-water equations while possessing the special reposing state of granular material. In this paper, we develop a third-order Runge-Kutta discontinuous Galerkin (RKDG) method for the numerical solution of the one-dimensional SH equations. We adopt a TVD slope limiter to suppress numerical oscillations near discontinuities. And we give numerical treatments for the avalanche front and for the bed friction to achieve the well-balanced reposing property of granular materials. Numerical results of the avalanche of cohesionless dry granular materials down an inclined and smoothly transitioned to horizontal plane under various internal and bed friction angles and slope angles are given to show the performance of the present numerical scheme.
Current browse context:
math.NA
References & Citations
export BibTeX citation
Loading...
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.