Computer Science > Cryptography and Security
[Submitted on 6 May 2022]
Title:Private delegated computations using strong isolation
View PDFAbstract:Sensitive computations are now routinely delegated to third-parties. In response, Confidential Computing technologies are being introduced to microprocessors, offering a protected processing environment, which we generically call an isolate, providing confidentiality and integrity guarantees to code and data hosted within -- even in the face of a privileged attacker. Isolates, with an attestation protocol, permit remote third-parties to establish a trusted "beachhead" containing known code and data on an otherwise untrusted machine. Yet, the rise of these technologies introduces many new problems, including: how to ease provisioning of computations safely into isolates; how to develop distributed systems spanning multiple classes of isolate; and what to do about the billions of "legacy" devices without support for Confidential Computing?
Tackling the problems above, we introduce Veracruz, a framework that eases the design and implementation of complex privacy-preserving, collaborative, delegated computations among a group of mutually mistrusting principals. Veracruz supports multiple isolation technologies and provides a common programming model and attestation protocol across all of them, smoothing deployment of delegated computations over supported technologies. We demonstrate Veracruz in operation, on private in-cloud object detection on encrypted video streaming from a video camera. In addition to supporting hardware-backed isolates -- like AWS Nitro Enclaves and Arm Confidential Computing Architecture Realms -- Veracruz also provides pragmatic "software isolates" on Armv8-A devices without hardware Confidential Computing capability, using the high-assurance seL4 microkernel and our IceCap framework.
Current browse context:
cs.CR
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.