Computer Science > Machine Learning
[Submitted on 5 May 2022]
Title:On Disentangled and Locally Fair Representations
View PDFAbstract:We study the problem of performing classification in a manner that is fair for sensitive groups, such as race and gender. This problem is tackled through the lens of disentangled and locally fair representations. We learn a locally fair representation, such that, under the learned representation, the neighborhood of each sample is balanced in terms of the sensitive attribute. For instance, when a decision is made to hire an individual, we ensure that the $K$ most similar hired individuals are racially balanced. Crucially, we ensure that similar individuals are found based on attributes not correlated to their race. To this end, we disentangle the embedding space into two representations. The first of which is correlated with the sensitive attribute while the second is not. We apply our local fairness objective only to the second, uncorrelated, representation. Through a set of experiments, we demonstrate the necessity of both disentangled and local fairness for obtaining fair and accurate representations. We evaluate our method on real-world settings such as predicting income and re-incarceration rate and demonstrate the advantage of our method.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.