Computer Science > Computation and Language
[Submitted on 4 May 2022 (v1), last revised 21 Dec 2023 (this version, v2)]
Title:Hyperbolic Relevance Matching for Neural Keyphrase Extraction
View PDF HTML (experimental)Abstract:Keyphrase extraction is a fundamental task in natural language processing and information retrieval that aims to extract a set of phrases with important information from a source document. Identifying important keyphrase is the central component of the keyphrase extraction task, and its main challenge is how to represent information comprehensively and discriminate importance accurately. In this paper, to address these issues, we design a new hyperbolic matching model (HyperMatch) to represent phrases and documents in the same hyperbolic space and explicitly estimate the phrase-document relevance via the Poincaré distance as the important score of each phrase. Specifically, to capture the hierarchical syntactic and semantic structure information, HyperMatch takes advantage of the hidden representations in multiple layers of RoBERTa and integrates them as the word embeddings via an adaptive mixing layer. Meanwhile, considering the hierarchical structure hidden in the document, HyperMatch embeds both phrases and documents in the same hyperbolic space via a hyperbolic phrase encoder and a hyperbolic document encoder. This strategy can further enhance the estimation of phrase-document relevance due to the good properties of hyperbolic space. In this setting, the keyphrase extraction can be taken as a matching problem and effectively implemented by minimizing a hyperbolic margin-based triplet loss. Extensive experiments are conducted on six benchmarks and demonstrate that HyperMatch outperforms the state-of-the-art baselines.
Submission history
From: Mingyang Song [view email][v1] Wed, 4 May 2022 13:13:52 UTC (2,896 KB)
[v2] Thu, 21 Dec 2023 11:30:54 UTC (552 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.