Computer Science > Artificial Intelligence
[Submitted on 4 May 2022]
Title:Explainable Knowledge Graph Embedding: Inference Reconciliation for Knowledge Inferences Supporting Robot Actions
View PDFAbstract:Learned knowledge graph representations supporting robots contain a wealth of domain knowledge that drives robot behavior. However, there does not exist an inference reconciliation framework that expresses how a knowledge graph representation affects a robot's sequential decision making. We use a pedagogical approach to explain the inferences of a learned, black-box knowledge graph representation, a knowledge graph embedding. Our interpretable model, uses a decision tree classifier to locally approximate the predictions of the black-box model, and provides natural language explanations interpretable by non-experts. Results from our algorithmic evaluation affirm our model design choices, and the results of our user studies with non-experts support the need for the proposed inference reconciliation framework. Critically, results from our simulated robot evaluation indicate that our explanations enable non-experts to correct erratic robot behaviors due to nonsensical beliefs within the black-box.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.