Computer Science > Machine Learning
[Submitted on 28 Apr 2022 (v1), last revised 2 Nov 2022 (this version, v3)]
Title:It's DONE: Direct ONE-shot learning with quantile weight imprinting
View PDFAbstract:Learning a new concept from one example is a superior function of the human brain and it is drawing attention in the field of machine learning as a one-shot learning task. In this paper, we propose one of the simplest methods for this task with a nonparametric weight imprinting, named Direct ONE-shot learning (DONE). DONE adds new classes to a pretrained deep neural network (DNN) classifier with neither training optimization nor pretrained-DNN modification. DONE is inspired by Hebbian theory and directly uses the neural activity input of the final dense layer obtained from data that belongs to the new additional class as the synaptic weight with a newly-provided-output neuron for the new class, transforming all statistical properties of the neural activity into those of synaptic weight by quantile normalization. DONE requires just one inference for learning a new concept and its procedure is simple, deterministic, not requiring parameter tuning and hyperparameters. DONE overcomes a severe problem of existing weight imprinting methods that DNN-dependently interfere with the classification of original-class images. The performance of DONE depends entirely on the pretrained DNN model used as a backbone model, and we confirmed that DONE with current well-trained backbone models perform at a decent accuracy.
Submission history
From: Kazufumi Hosoda [view email][v1] Thu, 28 Apr 2022 09:09:37 UTC (2,359 KB)
[v2] Fri, 3 Jun 2022 05:32:41 UTC (2,423 KB)
[v3] Wed, 2 Nov 2022 11:14:08 UTC (2,732 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.