Computer Science > Computer Vision and Pattern Recognition
[Submitted on 15 Apr 2022 (v1), last revised 10 Jun 2022 (this version, v2)]
Title:Multi-Frame Self-Supervised Depth with Transformers
View PDFAbstract:Multi-frame depth estimation improves over single-frame approaches by also leveraging geometric relationships between images via feature matching, in addition to learning appearance-based features. In this paper we revisit feature matching for self-supervised monocular depth estimation, and propose a novel transformer architecture for cost volume generation. We use depth-discretized epipolar sampling to select matching candidates, and refine predictions through a series of self- and cross-attention layers. These layers sharpen the matching probability between pixel features, improving over standard similarity metrics prone to ambiguities and local minima. The refined cost volume is decoded into depth estimates, and the whole pipeline is trained end-to-end from videos using only a photometric objective. Experiments on the KITTI and DDAD datasets show that our DepthFormer architecture establishes a new state of the art in self-supervised monocular depth estimation, and is even competitive with highly specialized supervised single-frame architectures. We also show that our learned cross-attention network yields representations transferable across datasets, increasing the effectiveness of pre-training strategies. Project page: this https URL
Submission history
From: Vitor Guizilini [view email][v1] Fri, 15 Apr 2022 19:04:57 UTC (22,645 KB)
[v2] Fri, 10 Jun 2022 21:56:34 UTC (22,645 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.