Computer Science > Information Theory
[Submitted on 14 Apr 2022 (v1), last revised 7 Jun 2023 (this version, v8)]
Title:On the Fundamental Tradeoff of Integrated Sensing and Communications Under Gaussian Channels
View PDFAbstract:ISAC is recognized as a promising technology for the next-generation wireless networks, which provides significant performance gains over individual S&C systems via the shared use of wireless resources. The characterization of the S&C performance tradeoff is at the core of the theoretical foundation of ISAC. In this paper, we consider a point-to-point ISAC model under vector Gaussian channels, and propose to use the CRB-rate region as a basic tool for depicting the fundamental S&C tradeoff. In particular, we consider the scenario where a unified ISAC waveform is emitted from a dual-functional ISAC Tx, which simultaneously performs S&C tasks with a communication Rx and a sensing Rx. In order to perform both S&C tasks, the ISAC waveform is required to be random to convey communication information, with realizations being perfectly known at both the ISAC Tx and the sensing Rx as a reference sensing signal as in typical radar systems.
As the main contribution of this paper, we characterize the S&C performance at the two corner points of the CRB-rate region, namely, $P_{SC}$ indicating the max. achievable rate constrained by the min. CRB, and $P_{CS}$ indicating the min. achievable CRB constrained by the max. rate. In particular, we derive the high-SNR capacity at $P_{SC}$, and provide lower and upper bounds for the sensing CRB at $P_{CS}$. We show that these two points can be achieved by the conventional Gaussian signaling and a novel strategy relying on the uniform distribution over the Stiefel manifold, respectively. Based on the above-mentioned analysis, we provide an outer bound and various inner bounds for the achievable CRB-rate regions.
Our main results reveal a two-fold tradeoff in ISAC systems, consisting of the subspace tradeoff (ST) and the deterministic-random tradeoff (DRT) that depend on the resource allocation and data modulation schemes employed for S&C, respectively.
Submission history
From: Yifeng Xiong [view email][v1] Thu, 14 Apr 2022 13:10:03 UTC (834 KB)
[v2] Sat, 16 Apr 2022 03:56:46 UTC (833 KB)
[v3] Mon, 16 May 2022 11:33:05 UTC (838 KB)
[v4] Tue, 28 Jun 2022 08:51:48 UTC (847 KB)
[v5] Mon, 29 Aug 2022 08:25:39 UTC (845 KB)
[v6] Tue, 27 Sep 2022 09:16:39 UTC (1,649 KB)
[v7] Wed, 26 Oct 2022 12:54:31 UTC (1,605 KB)
[v8] Wed, 7 Jun 2023 02:52:03 UTC (1,935 KB)
Current browse context:
cs.IT
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.