Computer Science > Artificial Intelligence
[Submitted on 10 Apr 2022 (v1), last revised 18 Apr 2023 (this version, v2)]
Title:A Fully Polynomial Time Approximation Scheme for Constrained MDPs and Stochastic Shortest Path under Local Transitions
View PDFAbstract:The fixed-horizon constrained Markov Decision Process (C-MDP) is a well-known model for planning in stochastic environments under operating constraints. Chance-Constrained MDP (CC-MDP) is a variant that allows bounding the probability of constraint violation, which is desired in many safety-critical applications. CC-MDP can also model a class of MDPs, called Stochastic Shortest Path (SSP), under dead-ends, where there is a trade-off between the probability-to-goal and cost-to-goal. This work studies the structure of (C)C-MDP, particularly an important variant that involves local transition. In this variant, the state reachability exhibits a certain degree of locality and independence from the remaining states. More precisely, the number of states, at a given time, that share some reachable future states is always constant. (C)C-MDP under local transition is NP-Hard even for a planning horizon of two. In this work, we propose a fully polynomial-time approximation scheme for (C)C-MDP that computes (near) optimal deterministic policies. Such an algorithm is among the best approximation algorithm attainable in theory and gives insights into the approximability of constrained MDP and its variants.
Submission history
From: Majid Khonji [view email][v1] Sun, 10 Apr 2022 22:08:33 UTC (259 KB)
[v2] Tue, 18 Apr 2023 17:16:33 UTC (337 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.