Computer Science > Machine Learning
[Submitted on 9 Apr 2022]
Title:Deep neural network goes lighter: A case study of deep compression techniques on automatic RF modulation recognition for Beyond 5G networks
View PDFAbstract:Automatic RF modulation recognition is a primary signal intelligence (SIGINT) technique that serves as a physical layer authentication enabler and automated signal processing scheme for the beyond 5G and military networks. Most existing works rely on adopting deep neural network architectures to enable RF modulation recognition. The application of deep compression for the wireless domain, especially automatic RF modulation classification, is still in its infancy. Lightweight neural networks are key to sustain edge computation capability on resource-constrained platforms. In this letter, we provide an in-depth view of the state-of-the-art deep compression and acceleration techniques with an emphasis on edge deployment for beyond 5G networks. Finally, we present an extensive analysis of the representative acceleration approaches as a case study on automatic radar modulation classification and evaluate them in terms of the computational metrics.
Submission history
From: Jithin Jagannath [view email][v1] Sat, 9 Apr 2022 04:51:26 UTC (12,062 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.