Quantum Physics
[Submitted on 8 Apr 2022 (v1), last revised 26 Jan 2023 (this version, v2)]
Title:A Mathematical Framework for Transformations of Physical Processes
View PDFAbstract:We observe that the existence of sequential and parallel composition supermaps in higher order physics can be formalised using enriched category theory. Encouraged by physically relevant examples such as unitary supermaps and layers within higher order causal categories (HOCCs), we treat the modelling of higher order physical theories with enriched monoidal categories in analogy with the modelling of physical theories are with monoidal categories. We use the enriched monoidal setting to construct a suitable definition of structure preserving map between higher order physical theories via the Grothendieck construction. We then show that the convenient feature of currying in higher order physical theories can be seen as a consequence of combining the primitive assumption of the existence of parallel and sequential composition supermaps with an additional feature of linking. In a second application we use our definition of structure preserving map to show that categories containing infinite towers of enriched monoidal categories with full and faithful structure preserving maps between them inevitably lead to closed monoidal structures. The aim of the proposed definitions is to step towards providing a broad framework for the study and comparison of novel causal structures in quantum theory, and, more broadly, a paradigm of physical theory where static and dynamical features are treated in a unified way.
Submission history
From: Matthew Wilson Mr [view email][v1] Fri, 8 Apr 2022 22:53:02 UTC (1,366 KB)
[v2] Thu, 26 Jan 2023 03:00:25 UTC (1,499 KB)
Current browse context:
quant-ph
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.