Computer Science > Computer Vision and Pattern Recognition
[Submitted on 7 Apr 2022]
Title:Exploring Cross-Domain Pretrained Model for Hyperspectral Image Classification
View PDFAbstract:A pretrain-finetune strategy is widely used to reduce the overfitting that can occur when data is insufficient for CNN training. First few layers of a CNN pretrained on a large-scale RGB dataset are capable of acquiring general image characteristics which are remarkably effective in tasks targeted for different RGB datasets. However, when it comes down to hyperspectral domain where each domain has its unique spectral properties, the pretrain-finetune strategy no longer can be deployed in a conventional way while presenting three major issues: 1) inconsistent spectral characteristics among the domains (e.g., frequency range), 2) inconsistent number of data channels among the domains, and 3) absence of large-scale hyperspectral dataset.
We seek to train a universal cross-domain model which can later be deployed for various spectral domains. To achieve, we physically furnish multiple inlets to the model while having a universal portion which is designed to handle the inconsistent spectral characteristics among different domains. Note that only the universal portion is used in the finetune process. This approach naturally enables the learning of our model on multiple domains simultaneously which acts as an effective workaround for the issue of the absence of large-scale dataset.
We have carried out a study to extensively compare models that were trained using cross-domain approach with ones trained from scratch. Our approach was found to be superior both in accuracy and in training efficiency. In addition, we have verified that our approach effectively reduces the overfitting issue, enabling us to deepen the model up to 13 layers (from 9) without compromising the accuracy.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.