Computer Science > Computer Vision and Pattern Recognition
[Submitted on 4 Apr 2022]
Title:Adaptive Network Combination for Single-Image Reflection Removal: A Domain Generalization Perspective
View PDFAbstract:Recently, multiple synthetic and real-world datasets have been built to facilitate the training of deep single image reflection removal (SIRR) models. Meanwhile, diverse testing sets are also provided with different types of reflection and scenes. However, the non-negligible domain gaps between training and testing sets make it difficult to learn deep models generalizing well to testing images. The diversity of reflections and scenes further makes it a mission impossible to learn a single model being effective to all testing sets and real-world reflections. In this paper, we tackle these issues by learning SIRR models from a domain generalization perspective. Particularly, for each source set, a specific SIRR model is trained to serve as a domain expert of relevant reflection types. For a given reflection-contaminated image, we present a reflection type-aware weighting (RTAW) module to predict expert-wise weights. RTAW can then be incorporated with adaptive network combination (AdaNEC) for handling different reflection types and scenes, i.e., generalizing to unknown domains. Two representative AdaNEC methods, i.e., output fusion (OF) and network interpolation (NI), are provided by considering both adaptation levels and efficiency. For images from one source set, we train RTAW to only predict expert-wise weights of other domain experts for improving generalization ability, while the weights of all experts are predicted and employed during testing. An in-domain expert (IDE) loss is presented for training RTAW. Extensive experiments show the appealing performance gain of our AdaNEC on different state-of-the-art SIRR networks. Source code and pre-trained models will available at this https URL.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.