Computer Science > Computation and Language
[Submitted on 29 Mar 2022 (v1), last revised 30 Mar 2022 (this version, v2)]
Title:Heuristic-based Inter-training to Improve Few-shot Multi-perspective Dialog Summarization
View PDFAbstract:Many organizations require their customer-care agents to manually summarize their conversations with customers. These summaries are vital for decision making purposes of the organizations. The perspective of the summary that is required to be created depends on the application of the summaries. With this work, we study the multi-perspective summarization of customer-care conversations between support agents and customers. We observe that there are different heuristics that are associated with summaries of different perspectives, and explore these heuristics to create weak-labeled data for intermediate training of the models before fine-tuning with scarce human annotated summaries. Most importantly, we show that our approach supports models to generate multi-perspective summaries with a very small amount of annotated data. For example, our approach achieves 94\% of the performance (Rouge-2) of a model trained with the original data, by training only with 7\% of the original data.
Submission history
From: Benjamin Sznajder [view email][v1] Tue, 29 Mar 2022 14:02:40 UTC (2,103 KB)
[v2] Wed, 30 Mar 2022 13:40:39 UTC (2,103 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.