Computer Science > Networking and Internet Architecture
[Submitted on 16 Mar 2022]
Title:A Deep Reinforcement Learning-Based Caching Strategy for IoT Networks with Transient Data
View PDFAbstract:The Internet of Things (IoT) has been continuously rising in the past few years, and its potentials are now more apparent. However, transient data generation and limited energy resources are the major bottlenecks of these networks. Besides, minimum delay and other conventional quality of service measurements are still valid requirements to meet. An efficient caching policy can help meet the standard quality of service requirements while bypassing IoT networks' specific limitations. Adopting deep reinforcement learning (DRL) algorithms enables us to develop an effective caching scheme without the need for any prior knowledge or contextual information. In this work, we propose a DRL-based caching scheme that improves the cache hit rate and reduces energy consumption of the IoT networks, in the meanwhile, taking data freshness and limited lifetime of IoT data into account. To better capture the regional-different popularity distribution, we propose a hierarchical architecture to deploy edge caching nodes in IoT networks. The results of comprehensive experiments show that our proposed method outperforms the well-known conventional caching policies and an existing DRL-based solution in terms of cache hit rate and energy consumption of the IoT networks by considerable margins.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.