Computer Science > Computation and Language
[Submitted on 14 Mar 2022]
Title:PERT: Pre-training BERT with Permuted Language Model
View PDFAbstract:Pre-trained Language Models (PLMs) have been widely used in various natural language processing (NLP) tasks, owing to their powerful text representations trained on large-scale corpora. In this paper, we propose a new PLM called PERT for natural language understanding (NLU). PERT is an auto-encoding model (like BERT) trained with Permuted Language Model (PerLM). The formulation of the proposed PerLM is straightforward. We permute a proportion of the input text, and the training objective is to predict the position of the original token. Moreover, we also apply whole word masking and N-gram masking to improve the performance of PERT. We carried out extensive experiments on both Chinese and English NLU benchmarks. The experimental results show that PERT can bring improvements over various comparable baselines on some of the tasks, while others are not. These results indicate that developing more diverse pre-training tasks is possible instead of masked language model variants. Several quantitative studies are carried out to better understand PERT, which might help design PLMs in the future. Resources are available: this https URL
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.