Mathematics > Optimization and Control
[Submitted on 11 Mar 2022 (v1), last revised 2 Mar 2023 (this version, v3)]
Title:Automatic Performance Estimation for Decentralized Optimization
View PDFAbstract:We present a methodology to automatically compute worst-case performance bounds for a large class of first-order decentralized optimization algorithms. These algorithms aim at minimizing the average of local functions that are distributed across a network of agents. They typically combine local computations and consensus steps. Our methodology is based on the approach of Performance Estimation Problem (PEP), which allows computing the worst-case performance and a worst-case instance of first-order optimization algorithms by solving an SDP. We propose two ways of representing consensus steps in PEPs, which allow writing and solving PEPs for decentralized optimization. The first formulation is exact but specific to a given averaging matrix. The second formulation is a relaxation but provides guarantees valid over an entire class of averaging matrices, characterized by their spectral range. This formulation often allows recovering a posteriori the worst possible averaging matrix for the given algorithm. We apply our methodology to three different decentralized methods. For each of them, we obtain numerically tight worst-case performance bounds that significantly improve on the existing ones, as well as insights about the parameters tuning and the worst communication networks.
Submission history
From: Sebastien Colla [view email][v1] Fri, 11 Mar 2022 14:47:17 UTC (587 KB)
[v2] Mon, 2 Jan 2023 14:24:33 UTC (640 KB)
[v3] Thu, 2 Mar 2023 09:44:04 UTC (1,943 KB)
Current browse context:
math.OC
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.