Computer Science > Computer Vision and Pattern Recognition
[Submitted on 16 Dec 2021]
Title:UMAD: Universal Model Adaptation under Domain and Category Shift
View PDFAbstract:Learning to reject unknown samples (not present in the source classes) in the target domain is fairly important for unsupervised domain adaptation (UDA). There exist two typical UDA scenarios, i.e., open-set, and open-partial-set, and the latter assumes that not all source classes appear in the target domain. However, most prior methods are designed for one UDA scenario and always perform badly on the other UDA scenario. Moreover, they also require the labeled source data during adaptation, limiting their usability in data privacy-sensitive applications. To address these issues, this paper proposes a Universal Model ADaptation (UMAD) framework which handles both UDA scenarios without access to the source data nor prior knowledge about the category shift between domains. Specifically, we aim to learn a source model with an elegantly designed two-head classifier and provide it to the target domain. During adaptation, we develop an informative consistency score to help distinguish unknown samples from known samples. To achieve bilateral adaptation in the target domain, we further maximize localized mutual information to align known samples with the source classifier and employ an entropic loss to push unknown samples far away from the source classification boundary, respectively. Experiments on open-set and open-partial-set UDA scenarios demonstrate that UMAD, as a unified approach without access to source data, exhibits comparable, if not superior, performance to state-of-the-art data-dependent methods.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.