Computer Science > Computer Science and Game Theory
[Submitted on 14 Dec 2021]
Title:Liquid Democracy with Ranked Delegations
View PDFAbstract:Liquid democracy is a novel paradigm for collective decision-making that gives agents the choice between casting a direct vote or delegating their vote to another agent. We consider a generalization of the standard liquid democracy setting by allowing agents to specify multiple potential delegates, together with a preference ranking among them. This generalization increases the number of possible delegation paths and enables higher participation rates because fewer votes are lost due to delegation cycles or abstaining agents. In order to implement this generalization of liquid democracy, we need to find a principled way of choosing between multiple delegation paths. In this paper, we provide a thorough axiomatic analysis of the space of delegation rules, i.e., functions assigning a feasible delegation path to each delegating agent. In particular, we prove axiomatic characterizations as well as an impossibility result for delegation rules. We also analyze requirements on delegation rules that have been suggested by practitioners, and introduce novel rules with attractive properties. By performing an extensive experimental analysis on synthetic as well as real-world data, we compare delegation rules with respect to several quantitative criteria relating to the chosen paths and the resulting distribution of voting power. Our experiments reveal that delegation rules can be aligned on a spectrum reflecting an inherent trade-off between competing objectives.
Submission history
From: Ulrike Schmidt-Kraepelin [view email][v1] Tue, 14 Dec 2021 16:15:47 UTC (61 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.