Computer Science > Cryptography and Security
[Submitted on 12 Oct 2021 (v1), last revised 4 Oct 2022 (this version, v2)]
Title:StateAFL: Greybox Fuzzing for Stateful Network Servers
View PDFAbstract:Fuzzing network servers is a technical challenge, since the behavior of the target server depends on its state over a sequence of multiple messages. Existing solutions are costly and difficult to use, as they rely on manually-customized artifacts such as protocol models, protocol parsers, and learning frameworks. The aim of this work is to develop a greybox fuzzer (StateaAFL) for network servers that only relies on lightweight analysis of the target program, with no manual customization, in a similar way to what the AFL fuzzer achieved for stateless programs. The proposed fuzzer instruments the target server at compile-time, to insert probes on memory allocations and network I/O operations. At run-time, it infers the current protocol state of the target server by taking snapshots of long-lived memory areas, and by applying a fuzzy hashing algorithm (Locality-Sensitive Hashing) to map memory contents to a unique state identifier. The fuzzer incrementally builds a protocol state machine for guiding fuzzing.
We implemented and released StateaAFL as open-source software. As a basis for reproducible experimentation, we integrated StateaAFL with a large set of network servers for popular protocols, with no manual customization to accomodate for the protocol. The experimental results show that the fuzzer can be applied with no manual customization on a large set of network servers for popular protocols, and that it can achieve comparable, or even better code coverage and bug detection than customized fuzzing. Moreover, our qualitative analysis shows that states inferred from memory better reflect the server behavior than only using response codes from messages.
Submission history
From: Roberto Natella [view email][v1] Tue, 12 Oct 2021 18:08:38 UTC (914 KB)
[v2] Tue, 4 Oct 2022 12:18:24 UTC (1,449 KB)
Current browse context:
cs.CR
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.