Computer Science > Computation and Language
[Submitted on 9 Oct 2021 (v1), last revised 21 Mar 2022 (this version, v3)]
Title:The Inductive Bias of In-Context Learning: Rethinking Pretraining Example Design
View PDFAbstract:Pretraining Neural Language Models (NLMs) over a large corpus involves chunking the text into training examples, which are contiguous text segments of sizes processable by the neural architecture. We highlight a bias introduced by this common practice: we prove that the pretrained NLM can model much stronger dependencies between text segments that appeared in the same training example, than it can between text segments that appeared in different training examples. This intuitive result has a twofold role. First, it formalizes the motivation behind a broad line of recent successful NLM training heuristics, proposed for the pretraining and fine-tuning stages, which do not necessarily appear related at first glance. Second, our result clearly indicates further improvements to be made in NLM pretraining for the benefit of Natural Language Understanding tasks. As an example, we propose "kNN-Pretraining": we show that including semantically related non-neighboring sentences in the same pretraining example yields improved sentence representations and open domain question answering abilities. This theoretically motivated degree of freedom for pretraining example design indicates new training schemes for self-improving representations.
Submission history
From: Yoav Levine [view email][v1] Sat, 9 Oct 2021 11:05:16 UTC (117 KB)
[v2] Mon, 25 Oct 2021 15:51:31 UTC (115 KB)
[v3] Mon, 21 Mar 2022 17:57:13 UTC (119 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.