Computer Science > Emerging Technologies
[Submitted on 20 Nov 2020 (v1), last revised 12 May 2021 (this version, v2)]
Title:Computing properties of thermodynamic binding networks: An integer programming approach
View PDFAbstract:The thermodynamic binding networks (TBN) model is a tool for studying engineered molecular systems. The TBN model allows one to reason about their behavior through a simplified abstraction that ignores details about molecular composition, focusing on two key determinants of a system's energetics common to any chemical substrate: how many molecular bonds are formed, and how many separate complexes exist in the system. We formulate as an integer program the NP-hard problem of computing stable (a.k.a., minimum energy) configurations of a TBN: those configurations that maximize the number of bonds and complexes. We provide open-source software solving this integer program. We give empirical evidence that this approach enables dramatically faster computation of TBN stable configurations than previous approaches based on SAT solvers. Furthermore, unlike SAT-based approaches, our integer programming formulation can reason about TBNs in which some molecules have unbounded counts. These improvements in turn allow us to efficiently automate verification of desired properties of practical TBNs. Finally, we show that the TBN has a natural representation with a unique Hilbert basis describing the "fundamental components" out of which locally minimal energy configurations are composed. This characterization helps verify correctness of not only stable configurations, but entire "kinetic pathways" in a TBN.
Submission history
From: David Doty [view email][v1] Fri, 20 Nov 2020 23:01:40 UTC (378 KB)
[v2] Wed, 12 May 2021 01:42:44 UTC (385 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.