Computer Science > Machine Learning
[Submitted on 19 Dec 2019]
Title:Graph Convolutional Networks: analysis, improvements and results
View PDFAbstract:In the current era of neural networks and big data, higher dimensional data is processed for automation of different application areas. Graphs represent a complex data organization in which dependencies between more than one object or activity occur. Due to the high dimensionality, this data creates challenges for machine learning algorithms. Graph convolutional networks were introduced to utilize the convolutional models concepts that shows good results. In this context, we enhanced two of the existing Graph convolutional network models by proposing four enhancements. These changes includes: hyper parameters optimization, convex combination of activation functions, topological information enrichment through clustering coefficients measure, and structural redesign of the network through addition of dense layers. We present extensive results on four state-of-art benchmark datasets. The performance is notable not only in terms of lesser computational cost compared to competitors, but also achieved competitive results for three of the datasets and state-of-the-art for the fourth dataset.
Current browse context:
cs.LG
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.