Statistics > Computation
[Submitted on 26 Aug 2018 (v1), last revised 2 Aug 2021 (this version, v3)]
Title:Hypocoercivity of Piecewise Deterministic Markov Process-Monte Carlo
View PDFAbstract:In this work, we establish $\mathrm{L}^2$-exponential convergence for a broad class of Piecewise Deterministic Markov Processes recently proposed in the context of Markov Process Monte Carlo methods and covering in particular the Randomized Hamiltonian Monte Carlo, the Zig-Zag process and the Bouncy Particle Sampler. The kernel of the symmetric part of the generator of such processes is non-trivial, and we follow the ideas recently introduced by (Dolbeault et al., 2009, 2015) to develop a rigorous framework for hypocoercivity in a fairly general and unifying set-up, while deriving tractable estimates of the constants involved in terms of the parameters of the dynamics. As a by-product we characterize the scaling properties of these algorithms with respect to the dimension of classes of problems, therefore providing some theoretical evidence to support their practical relevance.
Submission history
From: Alain Durmus [view email][v1] Sun, 26 Aug 2018 16:55:00 UTC (54 KB)
[v2] Thu, 28 Feb 2019 05:05:58 UTC (76 KB)
[v3] Mon, 2 Aug 2021 07:21:26 UTC (147 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
Connected Papers (What is Connected Papers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.