Mathematics > Numerical Analysis
[Submitted on 4 Apr 2018 (v1), last revised 12 Sep 2019 (this version, v2)]
Title:Efficient Solution of Large-Scale Algebraic Riccati Equations Associated with Index-2 DAEs via the Inexact Low-Rank Newton-ADI Method
View PDFAbstract:This paper extends the algorithm of Benner, Heinkenschloss, Saak, and Weichelt: An inexact low-rank Newton-ADI method for large-scale algebraic Riccati equations, Applied Numerical Mathematics Vol.~108 (2016), pp.~125--142, doi:https://doi.org/10.1016/j.apnum.2016.05.006 to Riccati equations associated with Hessenberg index-2 Differential Algebratic Equation (DAE) systems. Such DAE systems arise, e.g., from semi-discretized, linearized (around steady state) Navier-Stokes equations. The solution of the associated Riccati equation is important, e.g., to compute feedback laws that stabilize the Navier-Stokes equations. Challenges in the numerical solution of the Riccati equation arise from the large-scale of the underlying systems and the algebraic constraint in the DAE system. These challenges are met by a careful extension of the inexact low-rank Newton-ADI method to the case of DAE systems. A main ingredient in the extension to the DAE case is the projection onto the manifold described by the algebraic constraints. In the algorithm, the equations are never explicitly projected, but the projection is only applied as needed. Numerical experience indicates that the algorithmic choices for the control of inexactness and line-search can help avoid subproblems with matrices that are only marginally stable. The performance of the algorithm is illustrated on a large-scale Riccati equation associated with the stabilization of Navier-Stokes flow around a cylinder.
Submission history
From: Jens Saak [view email][v1] Wed, 4 Apr 2018 13:47:35 UTC (268 KB)
[v2] Thu, 12 Sep 2019 10:11:08 UTC (269 KB)
Current browse context:
math.NA
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.