Computer Science > Machine Learning
[Submitted on 20 Nov 2017 (v1), last revised 24 Apr 2018 (this version, v2)]
Title:Residual Gated Graph ConvNets
View PDFAbstract:Graph-structured data such as social networks, functional brain networks, gene regulatory networks, communications networks have brought the interest in generalizing deep learning techniques to graph domains. In this paper, we are interested to design neural networks for graphs with variable length in order to solve learning problems such as vertex classification, graph classification, graph regression, and graph generative tasks. Most existing works have focused on recurrent neural networks (RNNs) to learn meaningful representations of graphs, and more recently new convolutional neural networks (ConvNets) have been introduced. In this work, we want to compare rigorously these two fundamental families of architectures to solve graph learning tasks. We review existing graph RNN and ConvNet architectures, and propose natural extension of LSTM and ConvNet to graphs with arbitrary size. Then, we design a set of analytically controlled experiments on two basic graph problems, i.e. subgraph matching and graph clustering, to test the different architectures. Numerical results show that the proposed graph ConvNets are 3-17% more accurate and 1.5-4x faster than graph RNNs. Graph ConvNets are also 36% more accurate than variational (non-learning) techniques. Finally, the most effective graph ConvNet architecture uses gated edges and residuality. Residuality plays an essential role to learn multi-layer architectures as they provide a 10% gain of performance.
Submission history
From: Xavier Bresson [view email][v1] Mon, 20 Nov 2017 21:28:40 UTC (2,220 KB)
[v2] Tue, 24 Apr 2018 08:19:32 UTC (2,221 KB)
Current browse context:
cs.LG
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.