Computer Science > Computation and Language
[Submitted on 7 Oct 2017 (v1), last revised 11 Jun 2018 (this version, v2)]
Title:Multi-Document Summarization using Distributed Bag-of-Words Model
View PDFAbstract:As the number of documents on the web is growing exponentially, multi-document summarization is becoming more and more important since it can provide the main ideas in a document set in short time. In this paper, we present an unsupervised centroid-based document-level reconstruction framework using distributed bag of words model. Specifically, our approach selects summary sentences in order to minimize the reconstruction error between the summary and the documents. We apply sentence selection and beam search, to further improve the performance of our model. Experimental results on two different datasets show significant performance gains compared with the state-of-the-art baselines.
Submission history
From: Ishan Verma [view email][v1] Sat, 7 Oct 2017 20:43:27 UTC (286 KB)
[v2] Mon, 11 Jun 2018 07:27:24 UTC (120 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.