Computer Science > Data Structures and Algorithms
[Submitted on 11 Jan 2017 (v1), last revised 20 Jan 2017 (this version, v2)]
Title:A practical efficient and effective method for the Hamiltonian cycle problem that runs on a standard computer
View PDFAbstract:Given $N$ cities and $R < N^2 - N$ directed (unidirectional/one way) roads does there exist a tour of all $N$ cities stopping at each city exactly once using the given roads (a Hamiltonian cycle)? This Hamiltonian cycle problem (HCP) is an NP-complete problem, for which there is no known polynomial time solution algorithm. The HCP has important practical applications, for example, to logistical problems. It was claimed that an adiabatic quantum computer could solve an NP-complete problem faster than classical algorithms, but claim appears to have been debunked. Here we demonstrate an algorithm which runs on a standard computer that efficiently and effectively solves the HCP for at least up to 500 cities: We first optimized a simulated annealing based algorithm used for smaller sized HCP problems. Then we found that when a tour was deliberately inserted in a list of otherwise randomly chosen roads, crucially, if "extra" random roads are added to bring the total number of roads up to $0.58 N log_e N$ or more there is a 100% chance our algorithm will find a HC, but conversely when a list of roads does not include a pre-inserted tour random roads have to be added until there are $0.9 N log_e N$ roads to have a chance of finding a HC. We found similarly for a set of roads non-randomly chosen. Thus, the presence of a HC in a set of roads induces "connectivity" throughout the roads and a HC can be found with an insertion of a modest number of extra roads. Our algorithm also shows that only weakly non-local information is needed to find an HCP that is a global state.
Submission history
From: Timothy Williams [view email][v1] Wed, 11 Jan 2017 19:38:20 UTC (244 KB)
[v2] Fri, 20 Jan 2017 21:11:21 UTC (243 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.