Nuclear Experiment
[Submitted on 11 Feb 2014 (v1), last revised 3 Oct 2014 (this version, v2)]
Title:Measurement of the structure function of the nearly free neutron using spectator tagging in inelastic $^2$H(e, e'p)X scattering with CLAS
View PDFAbstract:Much less is known about neutron structure than that of the proton due to the absence of free neutron targets. Neutron information is usually extracted from data on nuclear targets such as deuterium, requiring corrections for nuclear binding and nucleon off-shell effects. These corrections are model dependent and have significant uncertainties, especially for large values of the Bjorken scaling variable x. The Barely Off-shell Nucleon Structure (BONuS) experiment at Jefferson Lab measured the inelastic electron deuteron scattering cross section, tagging spectator protons in coincidence with the scattered electrons. This method reduces nuclear binding uncertainties significantly and has allowed for the first time a (nearly) model independent extraction of the neutron structure function. A novel compact radial time projection chamber was built to detect protons with momentum between 70 and 150 MeV/c. For the extraction of the free neutron structure function $F_{2n}$, spectator protons at backward angle and with momenta below 100 MeV/c were selected, ensuring that the scattering took place on a nearly free neutron. The scattered electrons were detected with Jefferson Lab's CLAS spectrometer. The extracted neutron structure function $F_{2n}$ and its ratio to the deuteron structure function $F_{2d}$ are presented in both the resonance and deep inelastic regions. The dependence of the cross section on the spectator proton momentum and angle is investigated, and tests of the spectator mechanism for different kinematics are performed. Our data set can be used to study neutron resonance excitations, test quark hadron duality in the neutron, develop more precise parametrizations of structure functions, as well as investigate binding effects (including possible mechanisms for the nuclear EMC effect) and provide a first glimpse of the asymptotic behavior of d/u as x goes to 1.
Submission history
From: Sebastian E. Kuhn [view email][v1] Tue, 11 Feb 2014 12:59:02 UTC (1,267 KB)
[v2] Fri, 3 Oct 2014 16:14:16 UTC (2,058 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
Connected Papers (What is Connected Papers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.