Computer Science > Data Structures and Algorithms
[Submitted on 4 Apr 2012 (v1), last revised 31 Oct 2012 (this version, v2)]
Title:A New Approach to Online Scheduling: Approximating the Optimal Competitive Ratio
View PDFAbstract:We propose a new approach to competitive analysis in online scheduling by introducing the novel concept of competitive-ratio approximation schemes. Such a scheme algorithmically constructs an online algorithm with a competitive ratio arbitrarily close to the best possible competitive ratio for any online algorithm. We study the problem of scheduling jobs online to minimize the weighted sum of completion times on parallel, related, and unrelated machines, and we derive both deterministic and randomized algorithms which are almost best possible among all online algorithms of the respective settings. We also generalize our techniques to arbitrary monomial cost functions and apply them to the makespan objective. Our method relies on an abstract characterization of online algorithms combined with various simplifications and transformations. We also contribute algorithmic means to compute the actual value of the best possi- ble competitive ratio up to an arbitrary accuracy. This strongly contrasts all previous manually obtained competitiveness results for algorithms and, most importantly, it reduces the search for the optimal com- petitive ratio to a question that a computer can answer. We believe that our concept can also be applied to many other problems and yields a new perspective on online algorithms in general.
Submission history
From: Olaf Maurer [view email][v1] Wed, 4 Apr 2012 09:17:22 UTC (30 KB)
[v2] Wed, 31 Oct 2012 14:43:08 UTC (31 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.