Computer Science > Computational Complexity
[Submitted on 14 Jul 2009]
Title:Separations of non-monotonic randomness notions
View PDFAbstract: In the theory of algorithmic randomness, several notions of random sequence are defined via a game-theoretic approach, and the notions that received most attention are perhaps Martin-Loef randomness and computable randomness. The latter notion was introduced by Schnorr and is rather natural: an infinite binary sequence is computably random if no total computable strategy succeeds on it by betting on bits in order. However, computably random sequences can have properties that one may consider to be incompatible with being random, in particular, there are computably random sequences that are highly compressible. The concept of Martin-Loef randomness is much better behaved in this and other respects, on the other hand its definition in terms of martingales is considerably less natural. Muchnik, elaborating on ideas of Kolmogorov and Loveland, refined Schnorr's model by also allowing non-monotonic strategies, i.e. strategies that do not bet on bits in order. The subsequent ``non-monotonic'' notion of randomness, now called Kolmogorov-Loveland randomness, has been shown to be quite close to Martin-Loef randomness, but whether these two classes coincide remains a fundamental open question. As suggested by Miller and Nies, we study in this paper weak versions of Kolmogorov-Loveland randomness, where the betting strategies are non-adaptive (i.e., the positions of the bits to bet on should be decided before the game). We obtain a full classification of the different notions we consider.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.